Mister Exam

Other calculators

Integral of 1/(x+lnx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo              
  /              
 |               
 |      1        
 |  ---------- dx
 |  x + log(x)   
 |               
/                
1                
$$\int\limits_{1}^{\infty} \frac{1}{x + \log{\left(x \right)}}\, dx$$
Integral(1/(x + log(x)), (x, 1, oo))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 |     1                |     1        
 | ---------- dx = C +  | ---------- dx
 | x + log(x)           | x + log(x)   
 |                      |              
/                      /               
$$\int \frac{1}{x + \log{\left(x \right)}}\, dx = C + \int \frac{1}{x + \log{\left(x \right)}}\, dx$$
The answer [src]
 oo              
  /              
 |               
 |      1        
 |  ---------- dx
 |  x + log(x)   
 |               
/                
1                
$$\int\limits_{1}^{\infty} \frac{1}{x + \log{\left(x \right)}}\, dx$$
=
=
 oo              
  /              
 |               
 |      1        
 |  ---------- dx
 |  x + log(x)   
 |               
/                
1                
$$\int\limits_{1}^{\infty} \frac{1}{x + \log{\left(x \right)}}\, dx$$
Integral(1/(x + log(x)), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.