Mister Exam

Other calculators


x/sqrt(x-2)

Integral of x/sqrt(x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3             
  /             
 |              
 |      x       
 |  --------- dx
 |    _______   
 |  \/ x - 2    
 |              
/               
2               
$$\int\limits_{2}^{3} \frac{x}{\sqrt{x - 2}}\, dx$$
Integral(x/sqrt(x - 2), (x, 2, 3))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                           3/2
 |     x                  _______   2*(x - 2)   
 | --------- dx = C + 4*\/ x - 2  + ------------
 |   _______                             3      
 | \/ x - 2                                     
 |                                              
/                                               
$$\int \frac{x}{\sqrt{x - 2}}\, dx = C + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3} + 4 \sqrt{x - 2}$$
The graph
The answer [src]
14/3
$$\frac{14}{3}$$
=
=
14/3
$$\frac{14}{3}$$
14/3
Numerical answer [src]
4.66666666560532
4.66666666560532
The graph
Integral of x/sqrt(x-2) dx

    Use the examples entering the upper and lower limits of integration.