Mister Exam

Other calculators

Integral of x/sqrt(5-2x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       x         
 |  ------------ dx
 |             2   
 |    _________    
 |  \/ 5 - 2*x     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x}{\left(\sqrt{5 - 2 x}\right)^{2}}\, dx$$
Integral(x/(sqrt(5 - 2*x))^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 |      x                5*log(-5 + 2*x)   x
 | ------------ dx = C - --------------- - -
 |            2                 4          2
 |   _________                              
 | \/ 5 - 2*x                               
 |                                          
/                                           
$$\int \frac{x}{\left(\sqrt{5 - 2 x}\right)^{2}}\, dx = C - \frac{x}{2} - \frac{5 \log{\left(2 x - 5 \right)}}{4}$$
The graph
The answer [src]
  1   5*log(3)   5*log(5)
- - - -------- + --------
  2      4          4    
$$- \frac{5 \log{\left(3 \right)}}{4} - \frac{1}{2} + \frac{5 \log{\left(5 \right)}}{4}$$
=
=
  1   5*log(3)   5*log(5)
- - - -------- + --------
  2      4          4    
$$- \frac{5 \log{\left(3 \right)}}{4} - \frac{1}{2} + \frac{5 \log{\left(5 \right)}}{4}$$
-1/2 - 5*log(3)/4 + 5*log(5)/4
Numerical answer [src]
0.138532029707488
0.138532029707488

    Use the examples entering the upper and lower limits of integration.