Mister Exam

Other calculators

Integral of x/sqrt(5x^2-2x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |           x            
 |  ------------------- dx
 |     ________________   
 |    /    2              
 |  \/  5*x  - 2*x + 1    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{x}{\sqrt{\left(5 x^{2} - 2 x\right) + 1}}\, dx$$
Integral(x/sqrt(5*x^2 - 2*x + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                               /                      
 |                               |                       
 |          x                    |          x            
 | ------------------- dx = C +  | ------------------- dx
 |    ________________           |    ________________   
 |   /    2                      |   /              2    
 | \/  5*x  - 2*x + 1            | \/  1 - 2*x + 5*x     
 |                               |                       
/                               /                        
$$\int \frac{x}{\sqrt{\left(5 x^{2} - 2 x\right) + 1}}\, dx = C + \int \frac{x}{\sqrt{5 x^{2} - 2 x + 1}}\, dx$$
The answer [src]
  1                       
  /                       
 |                        
 |           x            
 |  ------------------- dx
 |     ________________   
 |    /              2    
 |  \/  1 - 2*x + 5*x     
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{x}{\sqrt{5 x^{2} - 2 x + 1}}\, dx$$
=
=
  1                       
  /                       
 |                        
 |           x            
 |  ------------------- dx
 |     ________________   
 |    /              2    
 |  \/  1 - 2*x + 5*x     
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{x}{\sqrt{5 x^{2} - 2 x + 1}}\, dx$$
Integral(x/sqrt(1 - 2*x + 5*x^2), (x, 0, 1))
Numerical answer [src]
0.372163576385602
0.372163576385602

    Use the examples entering the upper and lower limits of integration.