Mister Exam

Other calculators

Integral of x/(cbrt(3x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |  3 _________   
 |  \/ 3*x + 1    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x}{\sqrt[3]{3 x + 1}}\, dx$$
Integral(x/(3*x + 1)^(1/3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                               2/3            5/3
 |      x               (3*x + 1)      (3*x + 1)   
 | ----------- dx = C - ------------ + ------------
 | 3 _________               6              15     
 | \/ 3*x + 1                                      
 |                                                 
/                                                  
$$\int \frac{x}{\sqrt[3]{3 x + 1}}\, dx = C + \frac{\left(3 x + 1\right)^{\frac{5}{3}}}{15} - \frac{\left(3 x + 1\right)^{\frac{2}{3}}}{6}$$
The graph
The answer [src]
     3 ___
1    \/ 2 
-- + -----
10     5  
$$\frac{1}{10} + \frac{\sqrt[3]{2}}{5}$$
=
=
     3 ___
1    \/ 2 
-- + -----
10     5  
$$\frac{1}{10} + \frac{\sqrt[3]{2}}{5}$$
1/10 + 2^(1/3)/5
Numerical answer [src]
0.351984209978975
0.351984209978975

    Use the examples entering the upper and lower limits of integration.