1 / | | x | ----------- dx | 3 _________ | \/ 3*x + 1 | / 0
Integral(x/(3*x + 1)^(1/3), (x, 0, 1))
Let .
Then let and substitute :
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 2/3 5/3 | x (3*x + 1) (3*x + 1) | ----------- dx = C - ------------ + ------------ | 3 _________ 6 15 | \/ 3*x + 1 | /
3 ___ 1 \/ 2 -- + ----- 10 5
=
3 ___ 1 \/ 2 -- + ----- 10 5
1/10 + 2^(1/3)/5
Use the examples entering the upper and lower limits of integration.