Mister Exam

Other calculators


x/(cbrt(3x-1))

Integral of x/(cbrt(3x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |  3 _________   
 |  \/ 3*x - 1    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x}{\sqrt[3]{3 x - 1}}\, dx$$
Integral(x/((3*x - 1*1)^(1/3)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                  
 |                                2/3             5/3
 |      x               (-1 + 3*x)      (-1 + 3*x)   
 | ----------- dx = C + ------------- + -------------
 | 3 _________                6               15     
 | \/ 3*x - 1                                        
 |                                                   
/                                                    
$$\int \frac{x}{\sqrt[3]{3 x - 1}}\, dx = C + \frac{\left(3 x - 1\right)^{\frac{5}{3}}}{15} + \frac{\left(3 x - 1\right)^{\frac{2}{3}}}{6}$$
The graph
The answer [src]
 -pi*I          
 ------         
   3         2/3
e         3*2   
------- + ------
   10       10  
$$\frac{3 \cdot 2^{\frac{2}{3}}}{10} + \frac{e^{- \frac{i \pi}{3}}}{10}$$
=
=
 -pi*I          
 ------         
   3         2/3
e         3*2   
------- + ------
   10       10  
$$\frac{3 \cdot 2^{\frac{2}{3}}}{10} + \frac{e^{- \frac{i \pi}{3}}}{10}$$
Numerical answer [src]
(0.565753180979214 - 0.0770367074763296j)
(0.565753180979214 - 0.0770367074763296j)
The graph
Integral of x/(cbrt(3x-1)) dx

    Use the examples entering the upper and lower limits of integration.