Mister Exam

Other calculators


x/(9x^4+1)

Integral of x/(9x^4+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     x       
 |  -------- dx
 |     4       
 |  9*x  + 1   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x}{9 x^{4} + 1}\, dx$$
Integral(x/(9*x^4 + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is .

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                       /   2\
 |    x              atan\3*x /
 | -------- dx = C + ----------
 |    4                  6     
 | 9*x  + 1                    
 |                             
/                              
$$\int \frac{x}{9 x^{4} + 1}\, dx = C + \frac{\operatorname{atan}{\left(3 x^{2} \right)}}{6}$$
The graph
The answer [src]
atan(3)
-------
   6   
$$\frac{\operatorname{atan}{\left(3 \right)}}{6}$$
=
=
atan(3)
-------
   6   
$$\frac{\operatorname{atan}{\left(3 \right)}}{6}$$
Numerical answer [src]
0.208174295399709
0.208174295399709
The graph
Integral of x/(9x^4+1) dx

    Use the examples entering the upper and lower limits of integration.