Mister Exam

Other calculators


x/(3x^2+5)

Integral of x/(3x^2+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     x       
 |  -------- dx
 |     2       
 |  3*x  + 5   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x}{3 x^{2} + 5}\, dx$$
Integral(x/(3*x^2 + 5), (x, 0, 1))
Detail solution
We have the integral:
  /             
 |              
 |      x       
 | 1*-------- dx
 |      2       
 |   3*x  + 5   
 |              
/               
Rewrite the integrand
           /  3*2*x + 0   \                        
           |--------------|            /0\         
           |   2          |            |-|         
   x       \3*x  + 0*x + 5/            \5/         
-------- = ---------------- + ---------------------
   2              6                           2    
3*x  + 5                      /   ____       \     
                              |-\/ 15        |     
                              |--------*x + 0|  + 1
                              \   5          /     
or
  /               
 |                
 |      x         
 | 1*-------- dx  
 |      2        =
 |   3*x  + 5     
 |                
/                 
  
  /                 
 |                  
 |   3*2*x + 0      
 | -------------- dx
 |    2             
 | 3*x  + 0*x + 5   
 |                  
/                   
--------------------
         6          
In the integral
  /                 
 |                  
 |   3*2*x + 0      
 | -------------- dx
 |    2             
 | 3*x  + 0*x + 5   
 |                  
/                   
--------------------
         6          
do replacement
       2
u = 3*x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 5 + u                
 |                      
/             log(5 + u)
----------- = ----------
     6            6     
do backward replacement
  /                                 
 |                                  
 |   3*2*x + 0                      
 | -------------- dx                
 |    2                             
 | 3*x  + 0*x + 5                   
 |                        /       2\
/                      log\5 + 3*x /
-------------------- = -------------
         6                   6      
In the integral
0
do replacement
         ____ 
    -x*\/ 15  
v = ----------
        5     
then
the integral =
0 = 0
do backward replacement
0 = 0
Solution is:
       /       2\
    log\5 + 3*x /
C + -------------
          6      
The answer (Indefinite) [src]
  /                               
 |                      /       2\
 |    x              log\5 + 3*x /
 | -------- dx = C + -------------
 |    2                    6      
 | 3*x  + 5                       
 |                                
/                                 
$${{\log \left(3\,x^2+5\right)}\over{6}}$$
The graph
The answer [src]
  log(5)   log(8)
- ------ + ------
    6        6   
$${{\log 8}\over{6}}-{{\log 5}\over{6}}$$
=
=
  log(5)   log(8)
- ------ + ------
    6        6   
$$- \frac{\log{\left(5 \right)}}{6} + \frac{\log{\left(8 \right)}}{6}$$
Numerical answer [src]
0.0783339382076226
0.0783339382076226
The graph
Integral of x/(3x^2+5) dx

    Use the examples entering the upper and lower limits of integration.