Mister Exam

Other calculators


x^3sqrt(2+x^4)

Integral of x^3sqrt(2+x^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        ________   
 |   3   /      4    
 |  x *\/  2 + x   dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} x^{3} \sqrt{x^{4} + 2}\, dx$$
Integral(x^3*sqrt(2 + x^4), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |       ________          /     4\   
 |  3   /      4           \2 + x /   
 | x *\/  2 + x   dx = C + -----------
 |                              6     
/                                     
$$\int x^{3} \sqrt{x^{4} + 2}\, dx = C + \frac{\left(x^{4} + 2\right)^{\frac{3}{2}}}{6}$$
The graph
The answer [src]
  ___     ___
\/ 3    \/ 2 
----- - -----
  2       3  
$$- \frac{\sqrt{2}}{3} + \frac{\sqrt{3}}{2}$$
=
=
  ___     ___
\/ 3    \/ 2 
----- - -----
  2       3  
$$- \frac{\sqrt{2}}{3} + \frac{\sqrt{3}}{2}$$
sqrt(3)/2 - sqrt(2)/3
Numerical answer [src]
0.394620882993407
0.394620882993407
The graph
Integral of x^3sqrt(2+x^4) dx

    Use the examples entering the upper and lower limits of integration.