Integral of xcos(x-y) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(x−y).
Then du(x)=1.
To find v(x):
-
Let u=x−y.
Then let du=dx and substitute du:
∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
Now substitute u back in:
sin(x−y)
Now evaluate the sub-integral.
-
Let u=x−y.
Then let du=dx and substitute du:
∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
Now substitute u back in:
−cos(x−y)
-
Add the constant of integration:
xsin(x−y)+cos(x−y)+constant
The answer is:
xsin(x−y)+cos(x−y)+constant
The answer (Indefinite)
[src]
/
|
| x*cos(x - y) dx = C + x*sin(x - y) + cos(x - y)
|
/
(y−x)sin(y−x)−ysin(y−x)+cos(y−x)
-cos(y) - sin(-1 + y) + cos(-1 + y)
−cosy−sin(y−1)+cos(y−1)
=
-cos(y) - sin(-1 + y) + cos(-1 + y)
−sin(y−1)−cos(y)+cos(y−1)
Use the examples entering the upper and lower limits of integration.