Mister Exam

Integral of xcos(pi)xdx d0

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/2              
  /               
 |                
 |  x*cos(pi)*x dx
 |                
/                 
0                 
012xxcos(π)dx\int\limits_{0}^{\frac{1}{2}} x x \cos{\left(\pi \right)}\, dx
Integral((x*cos(pi))*x, (x, 0, 1/2))
Detail solution
  1. Rewrite the integrand:

    xxcos(π)=x2x x \cos{\left(\pi \right)} = - x^{2}

  2. The integral of a constant times a function is the constant times the integral of the function:

    (x2)dx=x2dx\int \left(- x^{2}\right)\, dx = - \int x^{2}\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    So, the result is: x33- \frac{x^{3}}{3}

  3. Add the constant of integration:

    x33+constant- \frac{x^{3}}{3}+ \mathrm{constant}


The answer is:

x33+constant- \frac{x^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      3
 |                      x 
 | x*cos(pi)*x dx = C - --
 |                      3 
/                         
xxcos(π)dx=Cx33\int x x \cos{\left(\pi \right)}\, dx = C - \frac{x^{3}}{3}
The graph
0.000.500.050.100.150.200.250.300.350.400.45-0.500.25
The answer [src]
-1/24
124- \frac{1}{24}
=
=
-1/24
124- \frac{1}{24}
-1/24
Numerical answer [src]
-0.0416666666666667
-0.0416666666666667

    Use the examples entering the upper and lower limits of integration.