Mister Exam

Integral of xcos(pi)xdx d0

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/2              
  /               
 |                
 |  x*cos(pi)*x dx
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{1}{2}} x x \cos{\left(\pi \right)}\, dx$$
Integral((x*cos(pi))*x, (x, 0, 1/2))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is when :

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      3
 |                      x 
 | x*cos(pi)*x dx = C - --
 |                      3 
/                         
$$\int x x \cos{\left(\pi \right)}\, dx = C - \frac{x^{3}}{3}$$
The graph
The answer [src]
-1/24
$$- \frac{1}{24}$$
=
=
-1/24
$$- \frac{1}{24}$$
-1/24
Numerical answer [src]
-0.0416666666666667
-0.0416666666666667

    Use the examples entering the upper and lower limits of integration.