Mister Exam

Integral of xcos4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  x*cos(4*x)*1 dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} x \cos{\left(4 x \right)} 1\, dx$$
Integral(x*cos(4*x)*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                       cos(4*x)   x*sin(4*x)
 | x*cos(4*x)*1 dx = C + -------- + ----------
 |                          16          4     
/                                             
$${{4\,x\,\sin \left(4\,x\right)+\cos \left(4\,x\right)}\over{16}}$$
The graph
The answer [src]
  1    sin(4)   cos(4)
- -- + ------ + ------
  16     4        16  
$${{4\,\sin 4+\cos 4}\over{16}}-{{1}\over{16}}$$
=
=
  1    sin(4)   cos(4)
- -- + ------ + ------
  16     4        16  
$$\frac{\sin{\left(4 \right)}}{4} - \frac{1}{16} + \frac{\cos{\left(4 \right)}}{16}$$
Numerical answer [src]
-0.292553350130958
-0.292553350130958
The graph
Integral of xcos4xdx dx

    Use the examples entering the upper and lower limits of integration.