Mister Exam

Integral of xcos²(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
 --               
 2                
  /               
 |                
 |       2        
 |  x*cos (3*x) dx
 |                
/                 
0                 
0π2xcos2(3x)dx\int\limits_{0}^{\frac{\pi}{2}} x \cos^{2}{\left(3 x \right)}\, dx
Integral(x*cos(3*x)^2, (x, 0, pi/2))
The answer (Indefinite) [src]
  /                                                                                  
 |                         2         2    2         2    2                           
 |      2               sin (3*x)   x *cos (3*x)   x *sin (3*x)   x*cos(3*x)*sin(3*x)
 | x*cos (3*x) dx = C - --------- + ------------ + ------------ + -------------------
 |                          36           4              4                  6         
/                                                                                    
xcos2(3x)dx=C+x2sin2(3x)4+x2cos2(3x)4+xsin(3x)cos(3x)6sin2(3x)36\int x \cos^{2}{\left(3 x \right)}\, dx = C + \frac{x^{2} \sin^{2}{\left(3 x \right)}}{4} + \frac{x^{2} \cos^{2}{\left(3 x \right)}}{4} + \frac{x \sin{\left(3 x \right)} \cos{\left(3 x \right)}}{6} - \frac{\sin^{2}{\left(3 x \right)}}{36}
The graph
0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.502
The answer [src]
         2
  1    pi 
- -- + ---
  36    16
136+π216- \frac{1}{36} + \frac{\pi^{2}}{16}
=
=
         2
  1    pi 
- -- + ---
  36    16
136+π216- \frac{1}{36} + \frac{\pi^{2}}{16}
-1/36 + pi^2/16
Numerical answer [src]
0.589072497290307
0.589072497290307

    Use the examples entering the upper and lower limits of integration.