Mister Exam

Integral of x×arcsin(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  x*asin(2*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \operatorname{asin}{\left(2 x \right)}\, dx$$
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

    SqrtQuadraticDenomRule(a=1, b=0, c=-4, coeffs=[1, 0, 0], context=x**2/sqrt(1 - 4*x**2), symbol=x)

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                                        __________
  /                                  2                 /        2 
 |                      asin(2*x)   x *asin(2*x)   x*\/  1 - 4*x  
 | x*asin(2*x) dx = C - --------- + ------------ + ---------------
 |                          16           2                8       
/                                                                 
$${{x^2\,\arcsin \left(2\,x\right)}\over{2}}-{{\arcsin \left(2\,x \right)}\over{16}}+{{x\,\sqrt{1-4\,x^2}}\over{8}}$$
The graph
The answer [src]
                ___
7*asin(2)   I*\/ 3 
--------- + -------
    16         8   
$${{7\,\arcsin 2+2\,\sqrt{3}\,i}\over{16}}$$
=
=
                ___
7*asin(2)   I*\/ 3 
--------- + -------
    16         8   
$$\frac{7 \operatorname{asin}{\left(2 \right)}}{16} + \frac{\sqrt{3} i}{8}$$
Numerical answer [src]
(0.687505232320913 - 0.359379330459425j)
(0.687505232320913 - 0.359379330459425j)
The graph
Integral of x×arcsin(2x) dx

    Use the examples entering the upper and lower limits of integration.