Integral of x*3*(x^2)-xdx dx
The solution
Detail solution
-
Integrate term-by-term:
-
Let u=x2.
Then let du=2xdx and substitute 23du:
∫23udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=23∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: 43u2
Now substitute u back in:
43x4
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2x2
The result is: 43x4−2x2
-
Now simplify:
4x2(3x2−2)
-
Add the constant of integration:
4x2(3x2−2)+constant
The answer is:
4x2(3x2−2)+constant
The answer (Indefinite)
[src]
/
| 2 4
| / 2 \ x 3*x
| \x*3*x - x/ dx = C - -- + ----
| 2 4
/
∫(x2⋅3x−x)dx=C+43x4−2x2
The graph
Use the examples entering the upper and lower limits of integration.