Mister Exam

Integral of x²-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |  / 2    \   
 |  \x  - 1/ dx
 |             
/              
0              
$$\int\limits_{0}^{2} \left(x^{2} - 1\right)\, dx$$
Integral(x^2 - 1, (x, 0, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        
 |                        3
 | / 2    \              x 
 | \x  - 1/ dx = C - x + --
 |                       3 
/                          
$$\int \left(x^{2} - 1\right)\, dx = C + \frac{x^{3}}{3} - x$$
The graph
The answer [src]
2/3
$$\frac{2}{3}$$
=
=
2/3
$$\frac{2}{3}$$
2/3
Numerical answer [src]
0.666666666666667
0.666666666666667
The graph
Integral of x²-1 dx

    Use the examples entering the upper and lower limits of integration.