Mister Exam

Other calculators

Integral of (1-x²)^(-1/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  1 - x     
 |                
/                 
1/2               
$$\int\limits_{\frac{1}{2}}^{1} \frac{1}{\sqrt{1 - x^{2}}}\, dx$$
Integral(1/sqrt(1 - x^2), (x, 1/2, 1))
Detail solution

    ArcsinRule(context=1/sqrt(1 - x**2), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                             
 |      1                      
 | ----------- dx = C + asin(x)
 |    ________                 
 |   /      2                  
 | \/  1 - x                   
 |                             
/                              
$$\int \frac{1}{\sqrt{1 - x^{2}}}\, dx = C + \operatorname{asin}{\left(x \right)}$$
The graph
The answer [src]
pi
--
3 
$$\frac{\pi}{3}$$
=
=
pi
--
3 
$$\frac{\pi}{3}$$
pi/3
Numerical answer [src]
1.04719755093136
1.04719755093136

    Use the examples entering the upper and lower limits of integration.