Mister Exam

Integral of (x²-6x+8)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                  
  /                  
 |                   
 |  / 2          \   
 |  \x  - 6*x + 8/ dx
 |                   
/                    
1                    
12((x26x)+8)dx\int\limits_{1}^{2} \left(\left(x^{2} - 6 x\right) + 8\right)\, dx
Integral(x^2 - 6*x + 8, (x, 1, 2))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (6x)dx=6xdx\int \left(- 6 x\right)\, dx = - 6 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 3x2- 3 x^{2}

      The result is: x333x2\frac{x^{3}}{3} - 3 x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      8dx=8x\int 8\, dx = 8 x

    The result is: x333x2+8x\frac{x^{3}}{3} - 3 x^{2} + 8 x

  2. Now simplify:

    x(x29x+24)3\frac{x \left(x^{2} - 9 x + 24\right)}{3}

  3. Add the constant of integration:

    x(x29x+24)3+constant\frac{x \left(x^{2} - 9 x + 24\right)}{3}+ \mathrm{constant}


The answer is:

x(x29x+24)3+constant\frac{x \left(x^{2} - 9 x + 24\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                       3
 | / 2          \             2         x 
 | \x  - 6*x + 8/ dx = C - 3*x  + 8*x + --
 |                                      3 
/                                         
((x26x)+8)dx=C+x333x2+8x\int \left(\left(x^{2} - 6 x\right) + 8\right)\, dx = C + \frac{x^{3}}{3} - 3 x^{2} + 8 x
The answer [src]
4/3
43\frac{4}{3}
=
=
4/3
43\frac{4}{3}
4/3
Numerical answer [src]
1.33333333333333
1.33333333333333

    Use the examples entering the upper and lower limits of integration.