Mister Exam

Integral of (x²-5x⁴)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4               
  /               
 |                
 |  / 2      4\   
 |  \x  - 5*x / dx
 |                
/                 
2                 
24(5x4+x2)dx\int\limits_{2}^{4} \left(- 5 x^{4} + x^{2}\right)\, dx
Integral(x^2 - 5*x^4, (x, 2, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (5x4)dx=5x4dx\int \left(- 5 x^{4}\right)\, dx = - 5 \int x^{4}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      So, the result is: x5- x^{5}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    The result is: x5+x33- x^{5} + \frac{x^{3}}{3}

  2. Add the constant of integration:

    x5+x33+constant- x^{5} + \frac{x^{3}}{3}+ \mathrm{constant}


The answer is:

x5+x33+constant- x^{5} + \frac{x^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                            3
 | / 2      4\           5   x 
 | \x  - 5*x / dx = C - x  + --
 |                           3 
/                              
(5x4+x2)dx=Cx5+x33\int \left(- 5 x^{4} + x^{2}\right)\, dx = C - x^{5} + \frac{x^{3}}{3}
The graph
2.04.02.22.42.62.83.03.23.43.63.80-2000
The answer [src]
-2920/3
29203- \frac{2920}{3}
=
=
-2920/3
29203- \frac{2920}{3}
-2920/3
Numerical answer [src]
-973.333333333333
-973.333333333333

    Use the examples entering the upper and lower limits of integration.