Integral of (e^(3x))*sin(x) dx
The solution
The answer (Indefinite)
[src]
/
| 3*x 3*x
| 3*x cos(x)*e 3*e *sin(x)
| E *sin(x) dx = C - ----------- + -------------
| 10 10
/
∫e3xsin(x)dx=C+103e3xsin(x)−10e3xcos(x)
The graph
3 3
1 cos(1)*e 3*e *sin(1)
-- - --------- + -----------
10 10 10
−10e3cos(1)+101+103e3sin(1)
=
3 3
1 cos(1)*e 3*e *sin(1)
-- - --------- + -----------
10 10 10
−10e3cos(1)+101+103e3sin(1)
1/10 - cos(1)*exp(3)/10 + 3*exp(3)*sin(1)/10
Use the examples entering the upper and lower limits of integration.