Mister Exam

Other calculators

Integral of (e^(3x))*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   3*x          
 |  E   *sin(x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} e^{3 x} \sin{\left(x \right)}\, dx$$
Integral(E^(3*x)*sin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                              3*x      3*x       
 |  3*x                 cos(x)*e      3*e   *sin(x)
 | E   *sin(x) dx = C - ----------- + -------------
 |                           10             10     
/                                                  
$$\int e^{3 x} \sin{\left(x \right)}\, dx = C + \frac{3 e^{3 x} \sin{\left(x \right)}}{10} - \frac{e^{3 x} \cos{\left(x \right)}}{10}$$
The graph
The answer [src]
             3      3       
1    cos(1)*e    3*e *sin(1)
-- - --------- + -----------
10       10           10    
$$- \frac{e^{3} \cos{\left(1 \right)}}{10} + \frac{1}{10} + \frac{3 e^{3} \sin{\left(1 \right)}}{10}$$
=
=
             3      3       
1    cos(1)*e    3*e *sin(1)
-- - --------- + -----------
10       10           10    
$$- \frac{e^{3} \cos{\left(1 \right)}}{10} + \frac{1}{10} + \frac{3 e^{3} \sin{\left(1 \right)}}{10}$$
1/10 - cos(1)*exp(3)/10 + 3*exp(3)*sin(1)/10
Numerical answer [src]
4.08519276912523
4.08519276912523

    Use the examples entering the upper and lower limits of integration.