Mister Exam

Other calculators

Integral of 2(xlnx-x)+2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  (2*(x*log(x) - x) + 2) dx
 |                           
/                            
0                            
01(2(xlog(x)x)+2)dx\int\limits_{0}^{1} \left(2 \left(x \log{\left(x \right)} - x\right) + 2\right)\, dx
Integral(2*(x*log(x) - x) + 2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2(xlog(x)x)dx=2(xlog(x)x)dx\int 2 \left(x \log{\left(x \right)} - x\right)\, dx = 2 \int \left(x \log{\left(x \right)} - x\right)\, dx

      1. Integrate term-by-term:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=log(x)u = \log{\left(x \right)}.

            Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

            ue2udu\int u e^{2 u}\, du

            1. Use integration by parts:

              udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

              Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

              Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

              To find v(u)v{\left(u \right)}:

              1. Let u=2uu = 2 u.

                Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                eu2du\int \frac{e^{u}}{2}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  False\text{False}

                  1. The integral of the exponential function is itself.

                    eudu=eu\int e^{u}\, du = e^{u}

                  So, the result is: eu2\frac{e^{u}}{2}

                Now substitute uu back in:

                e2u2\frac{e^{2 u}}{2}

              Now evaluate the sub-integral.

            2. The integral of a constant times a function is the constant times the integral of the function:

              e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

              1. Let u=2uu = 2 u.

                Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                eu2du\int \frac{e^{u}}{2}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  False\text{False}

                  1. The integral of the exponential function is itself.

                    eudu=eu\int e^{u}\, du = e^{u}

                  So, the result is: eu2\frac{e^{u}}{2}

                Now substitute uu back in:

                e2u2\frac{e^{2 u}}{2}

              So, the result is: e2u4\frac{e^{2 u}}{4}

            Now substitute uu back in:

            x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

          Method #2

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

            Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

            To find v(x)v{\left(x \right)}:

            1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

              xdx=x22\int x\, dx = \frac{x^{2}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            x2dx=xdx2\int \frac{x}{2}\, dx = \frac{\int x\, dx}{2}

            1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

              xdx=x22\int x\, dx = \frac{x^{2}}{2}

            So, the result is: x24\frac{x^{2}}{4}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x22- \frac{x^{2}}{2}

        The result is: x2log(x)23x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4}

      So, the result is: x2log(x)3x22x^{2} \log{\left(x \right)} - \frac{3 x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      2dx=2x\int 2\, dx = 2 x

    The result is: x2log(x)3x22+2xx^{2} \log{\left(x \right)} - \frac{3 x^{2}}{2} + 2 x

  2. Now simplify:

    x(2xlog(x)3x+4)2\frac{x \left(2 x \log{\left(x \right)} - 3 x + 4\right)}{2}

  3. Add the constant of integration:

    x(2xlog(x)3x+4)2+constant\frac{x \left(2 x \log{\left(x \right)} - 3 x + 4\right)}{2}+ \mathrm{constant}


The answer is:

x(2xlog(x)3x+4)2+constant\frac{x \left(2 x \log{\left(x \right)} - 3 x + 4\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         2            
 |                                       3*x     2       
 | (2*(x*log(x) - x) + 2) dx = C + 2*x - ---- + x *log(x)
 |                                        2              
/                                                        
(2(xlog(x)x)+2)dx=C+x2log(x)3x22+2x\int \left(2 \left(x \log{\left(x \right)} - x\right) + 2\right)\, dx = C + x^{2} \log{\left(x \right)} - \frac{3 x^{2}}{2} + 2 x
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5

    Use the examples entering the upper and lower limits of integration.