Mister Exam

Other calculators

Integral of e^(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  x ___   
 |  \/ E  dx
 |          
/           
0           
$$\int\limits_{0}^{1} e^{\frac{1}{x}}\, dx$$
Integral(E^(1/x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

        UpperGammaRule(a=1, e=-2, context=exp(_u)/_u**2, symbol=_u)

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 | x ___                  /   -1 \
 | \/ E  dx = C + x*expint|2, ---|
 |                        \    x /
/                                 
$$\int e^{\frac{1}{x}}\, dx = C + x \operatorname{E}_{2}\left(- \frac{1}{x}\right)$$
The answer [src]
oo - Ei(1)
$$- \operatorname{Ei}{\left(1 \right)} + \infty$$
=
=
oo - Ei(1)
$$- \operatorname{Ei}{\left(1 \right)} + \infty$$
oo - Ei(1)
Numerical answer [src]
3.91470672358516e+4333645441173067313
3.91470672358516e+4333645441173067313

    Use the examples entering the upper and lower limits of integration.