Mister Exam

Other calculators


2xe^(-x^2)

Integral of 2xe^(-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |         2   
 |       -x    
 |  2*x*E    dx
 |             
/              
0              
$$\int\limits_{0}^{1} e^{- x^{2}} \cdot 2 x\, dx$$
Integral((2*x)*E^(-x^2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      
 |                       
 |        2             2
 |      -x            -x 
 | 2*x*E    dx = C - e   
 |                       
/                        
$$\int e^{- x^{2}} \cdot 2 x\, dx = C - e^{- x^{2}}$$
The graph
The answer [src]
     -1
1 - e  
$$1 - e^{-1}$$
=
=
     -1
1 - e  
$$1 - e^{-1}$$
1 - exp(-1)
Numerical answer [src]
0.632120558828558
0.632120558828558
The graph
Integral of 2xe^(-x^2) dx

    Use the examples entering the upper and lower limits of integration.