1 / | | 9 | / 2 \ | 2*x*\x + 1/ *1 dx | / 0
Integral(2*x*(x^2 + 1)^9*1, (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 10 | 9 / 2 \ | / 2 \ \x + 1/ | 2*x*\x + 1/ *1 dx = C + ---------- | 10 /
Use the examples entering the upper and lower limits of integration.