Mister Exam

Other calculators


(4-x^2)^2

Integral of (4-x^2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |  /     2\    
 |  \4 - x /  dx
 |              
/               
0               
$$\int\limits_{0}^{1} \left(4 - x^{2}\right)^{2}\, dx$$
Integral((4 - x^2)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |         2                    3    5
 | /     2\                  8*x    x 
 | \4 - x /  dx = C + 16*x - ---- + --
 |                            3     5 
/                                     
$$\int \left(4 - x^{2}\right)^{2}\, dx = C + \frac{x^{5}}{5} - \frac{8 x^{3}}{3} + 16 x$$
The graph
The answer [src]
203
---
 15
$$\frac{203}{15}$$
=
=
203
---
 15
$$\frac{203}{15}$$
203/15
Numerical answer [src]
13.5333333333333
13.5333333333333
The graph
Integral of (4-x^2)^2 dx

    Use the examples entering the upper and lower limits of integration.