Mister Exam

Other calculators

Integral of 2x^2+2y^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                 
  /                 
 |                  
 |  /   2      2\   
 |  \2*x  + 2*y / dx
 |                  
/                   
 2                  
x                   
$$\int\limits_{x^{2}}^{x} \left(2 x^{2} + 2 y^{2}\right)\, dx$$
Integral(2*x^2 + 2*y^2, (x, x^2, x))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                           3         
 | /   2      2\          2*x         2
 | \2*x  + 2*y / dx = C + ---- + 2*x*y 
 |                         3           
/                                      
$$\int \left(2 x^{2} + 2 y^{2}\right)\, dx = C + \frac{2 x^{3}}{3} + 2 x y^{2}$$
The answer [src]
     6      3                   
  2*x    2*x       2  2        2
- ---- + ---- - 2*x *y  + 2*x*y 
   3      3                     
$$- \frac{2 x^{6}}{3} + \frac{2 x^{3}}{3} - 2 x^{2} y^{2} + 2 x y^{2}$$
=
=
     6      3                   
  2*x    2*x       2  2        2
- ---- + ---- - 2*x *y  + 2*x*y 
   3      3                     
$$- \frac{2 x^{6}}{3} + \frac{2 x^{3}}{3} - 2 x^{2} y^{2} + 2 x y^{2}$$
-2*x^6/3 + 2*x^3/3 - 2*x^2*y^2 + 2*x*y^2

    Use the examples entering the upper and lower limits of integration.