Mister Exam

Other calculators

Integral of 2x^3-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  /   3    2\   
 |  \2*x  - x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \left(2 x^{3} - x^{2}\right)\, dx$$
Integral(2*x^3 - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                       4    3
 | /   3    2\          x    x 
 | \2*x  - x / dx = C + -- - --
 |                      2    3 
/                              
$$\int \left(2 x^{3} - x^{2}\right)\, dx = C + \frac{x^{4}}{2} - \frac{x^{3}}{3}$$
The graph
The answer [src]
1/6
$$\frac{1}{6}$$
=
=
1/6
$$\frac{1}{6}$$
1/6
Numerical answer [src]
0.166666666666667
0.166666666666667

    Use the examples entering the upper and lower limits of integration.