Mister Exam

Other calculators

Integral of (2x^4+2x^3-3x^2+2x-9)/(x(x-1)(x+9)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                
  /                                
 |                                 
 |     4      3      2             
 |  2*x  + 2*x  - 3*x  + 2*x - 9   
 |  ---------------------------- dx
 |       x*(x - 1)*(x + 9)         
 |                                 
/                                  
0                                  
$$\int\limits_{0}^{1} \frac{\left(2 x + \left(- 3 x^{2} + \left(2 x^{4} + 2 x^{3}\right)\right)\right) - 9}{x \left(x - 1\right) \left(x + 9\right)}\, dx$$
Integral((2*x^4 + 2*x^3 - 3*x^2 + 2*x - 9)/(((x*(x - 1))*(x + 9))), (x, 0, 1))
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
70.8836614880054
70.8836614880054

    Use the examples entering the upper and lower limits of integration.