Mister Exam

Other calculators

Integral of (2x^2+x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of is when :

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                          2          3
 | /   2        \          x        2*x 
 | \2*x  + x - 1/ dx = C + -- - x + ----
 |                         2         3  
/                                       
$$\int \left(\left(2 x^{2} + x\right) - 1\right)\, dx = C + \frac{2 x^{3}}{3} + \frac{x^{2}}{2} - x$$
The graph
The answer [src]
32/3
$$\frac{32}{3}$$
=
=
32/3
$$\frac{32}{3}$$
32/3
Numerical answer [src]
10.6666666666667
10.6666666666667

    Use the examples entering the upper and lower limits of integration.