Mister Exam

Other calculators

Integral of 2x^2-x+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                  
  /                  
 |                   
 |  /   2        \   
 |  \2*x  - x + 1/ dx
 |                   
/                    
1                    
$$\int\limits_{1}^{2} \left(\left(2 x^{2} - x\right) + 1\right)\, dx$$
Integral(2*x^2 - x + 1, (x, 1, 2))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                              2      3
 | /   2        \              x    2*x 
 | \2*x  - x + 1/ dx = C + x - -- + ----
 |                             2     3  
/                                       
$$\int \left(\left(2 x^{2} - x\right) + 1\right)\, dx = C + \frac{2 x^{3}}{3} - \frac{x^{2}}{2} + x$$
The graph
The answer [src]
25/6
$$\frac{25}{6}$$
=
=
25/6
$$\frac{25}{6}$$
25/6
Numerical answer [src]
4.16666666666667
4.16666666666667

    Use the examples entering the upper and lower limits of integration.