Mister Exam

Other calculators

Integral of 2x^2(3x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     2             
 |  2*x *(3*x - 1) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} 2 x^{2} \left(3 x - 1\right)\, dx$$
Integral((2*x^2)*(3*x - 1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                            3      4
 |    2                    2*x    3*x 
 | 2*x *(3*x - 1) dx = C - ---- + ----
 |                          3      2  
/                                     
$$\int 2 x^{2} \left(3 x - 1\right)\, dx = C + \frac{3 x^{4}}{2} - \frac{2 x^{3}}{3}$$
The graph
The answer [src]
5/6
$$\frac{5}{6}$$
=
=
5/6
$$\frac{5}{6}$$
5/6
Numerical answer [src]
0.833333333333333
0.833333333333333

    Use the examples entering the upper and lower limits of integration.