1 / | | 2*x + 5 | ------------ dx | 2 | x + 5*x + 4 | / 0
Integral((2*x + 5)/(x^2 + 5*x + 4), (x, 0, 1))
/ | | 2*x + 5 | ------------ dx | 2 | x + 5*x + 4 | /
True
/ | | 2*x + 5 | ------------ dx | 2 = | x + 5*x + 4 | /
/ | | 2*x + 5 | ------------ dx | 2 | x + 5*x + 4 | /
/ | | 2*x + 5 | ------------ dx | 2 | x + 5*x + 4 | /
2 u = x + 5*x
/ | | 1 | ----- du = log(4 + u) | 4 + u | /
/ | | 2*x + 5 / 2 \ | ------------ dx = log\4 + x + 5*x/ | 2 | x + 5*x + 4 | /
/ 2 \ C + log\4 + x + 5*x/
/ | | 2*x + 5 / 2 \ | ------------ dx = C + log\x + 5*x + 4/ | 2 | x + 5*x + 4 | /
-log(4) + log(10)
=
-log(4) + log(10)
-log(4) + log(10)
Use the examples entering the upper and lower limits of integration.