Mister Exam

Other calculators


(2x+5)/(x^2+5x+4)

Integral of (2x+5)/(x^2+5x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    2*x + 5      
 |  ------------ dx
 |   2             
 |  x  + 5*x + 4   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{2 x + 5}{\left(x^{2} + 5 x\right) + 4}\, dx$$
Integral((2*x + 5)/(x^2 + 5*x + 4), (x, 0, 1))
Detail solution
We have the integral:
  /               
 |                
 |   2*x + 5      
 | ------------ dx
 |  2             
 | x  + 5*x + 4   
 |                
/                 
Rewrite the integrand
True
or
  /                 
 |                  
 |   2*x + 5        
 | ------------ dx  
 |  2              =
 | x  + 5*x + 4     
 |                  
/                   
  
  /               
 |                
 |   2*x + 5      
 | ------------ dx
 |  2             
 | x  + 5*x + 4   
 |                
/                 
In the integral
  /               
 |                
 |   2*x + 5      
 | ------------ dx
 |  2             
 | x  + 5*x + 4   
 |                
/                 
do replacement
     2      
u = x  + 5*x
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du = log(4 + u)
 | 4 + u                
 |                      
/                       
do backward replacement
  /                                   
 |                                    
 |   2*x + 5            /     2      \
 | ------------ dx = log\4 + x  + 5*x/
 |  2                                 
 | x  + 5*x + 4                       
 |                                    
/                                     
Solution is:
       /     2      \
C + log\4 + x  + 5*x/
The answer (Indefinite) [src]
  /                                       
 |                                        
 |   2*x + 5                / 2          \
 | ------------ dx = C + log\x  + 5*x + 4/
 |  2                                     
 | x  + 5*x + 4                           
 |                                        
/                                         
$$\int \frac{2 x + 5}{\left(x^{2} + 5 x\right) + 4}\, dx = C + \log{\left(\left(x^{2} + 5 x\right) + 4 \right)}$$
The graph
The answer [src]
-log(4) + log(10)
$$- \log{\left(4 \right)} + \log{\left(10 \right)}$$
=
=
-log(4) + log(10)
$$- \log{\left(4 \right)} + \log{\left(10 \right)}$$
-log(4) + log(10)
Numerical answer [src]
0.916290731874155
0.916290731874155
The graph
Integral of (2x+5)/(x^2+5x+4) dx

    Use the examples entering the upper and lower limits of integration.