Mister Exam

Other calculators

Integral of 2^x/(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |     x    
 |    2     
 |  ----- dx
 |  x + 1   
 |          
/           
0           
$$\int\limits_{0}^{1} \frac{2^{x}}{x + 1}\, dx$$
Integral(2^x/(x + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                 /        
 |                 |         
 |    x            |    x    
 |   2             |   2     
 | ----- dx = C +  | ----- dx
 | x + 1           | 1 + x   
 |                 |         
/                 /          
$$\int \frac{2^{x}}{x + 1}\, dx = C + \int \frac{2^{x}}{x + 1}\, dx$$
The answer [src]
  1         
  /         
 |          
 |     x    
 |    2     
 |  ----- dx
 |  1 + x   
 |          
/           
0           
$$\int\limits_{0}^{1} \frac{2^{x}}{x + 1}\, dx$$
=
=
  1         
  /         
 |          
 |     x    
 |    2     
 |  ----- dx
 |  1 + x   
 |          
/           
0           
$$\int\limits_{0}^{1} \frac{2^{x}}{x + 1}\, dx$$
Integral(2^x/(1 + x), (x, 0, 1))
Numerical answer [src]
0.961210657460779
0.961210657460779

    Use the examples entering the upper and lower limits of integration.