Mister Exam

Other calculators

Derivative of 2^x/(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x 
  2  
-----
x + 1
$$\frac{2^{x}}{x + 1}$$
2^x/(x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      x       x       
     2       2 *log(2)
- -------- + ---------
         2     x + 1  
  (x + 1)             
$$\frac{2^{x} \log{\left(2 \right)}}{x + 1} - \frac{2^{x}}{\left(x + 1\right)^{2}}$$
The second derivative [src]
 x /   2         2       2*log(2)\
2 *|log (2) + -------- - --------|
   |                 2    1 + x  |
   \          (1 + x)            /
----------------------------------
              1 + x               
$$\frac{2^{x} \left(\log{\left(2 \right)}^{2} - \frac{2 \log{\left(2 \right)}}{x + 1} + \frac{2}{\left(x + 1\right)^{2}}\right)}{x + 1}$$
The third derivative [src]
   /                          2              \
 x |   3         6       3*log (2)   6*log(2)|
2 *|log (2) - -------- - --------- + --------|
   |                 3     1 + x            2|
   \          (1 + x)                (1 + x) /
----------------------------------------------
                    1 + x                     
$$\frac{2^{x} \left(\log{\left(2 \right)}^{3} - \frac{3 \log{\left(2 \right)}^{2}}{x + 1} + \frac{6 \log{\left(2 \right)}}{\left(x + 1\right)^{2}} - \frac{6}{\left(x + 1\right)^{3}}\right)}{x + 1}$$