Mister Exam

Other calculators

Integral of 2^(-x)*arctg2^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |   -x     x      
 |  2  *atan (2) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} 2^{- x} \operatorname{atan}^{x}{\left(2 \right)}\, dx$$
Integral(2^(-x)*atan(2)^x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                 
 |                                     x            
 |  -x     x                       atan (2)         
 | 2  *atan (2) dx = C - ---------------------------
 |                        x           x             
/                        2 *log(2) - 2 *log(atan(2))
$$\int 2^{- x} \operatorname{atan}^{x}{\left(2 \right)}\, dx = C - \frac{\operatorname{atan}^{x}{\left(2 \right)}}{- 2^{x} \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + 2^{x} \log{\left(2 \right)}}$$
The graph
The answer [src]
          1                       atan(2)          
---------------------- - --------------------------
-log(atan(2)) + log(2)   -2*log(atan(2)) + 2*log(2)
$$- \frac{\operatorname{atan}{\left(2 \right)}}{- 2 \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + 2 \log{\left(2 \right)}} + \frac{1}{- \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + \log{\left(2 \right)}}$$
=
=
          1                       atan(2)          
---------------------- - --------------------------
-log(atan(2)) + log(2)   -2*log(atan(2)) + 2*log(2)
$$- \frac{\operatorname{atan}{\left(2 \right)}}{- 2 \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + 2 \log{\left(2 \right)}} + \frac{1}{- \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + \log{\left(2 \right)}}$$
1/(-log(atan(2)) + log(2)) - atan(2)/(-2*log(atan(2)) + 2*log(2))
Numerical answer [src]
0.754914519904385
0.754914519904385

    Use the examples entering the upper and lower limits of integration.