Integral of 2^(-x)*arctg2^x dx
The solution
The answer (Indefinite)
[src]
/
| x
| -x x atan (2)
| 2 *atan (2) dx = C - ---------------------------
| x x
/ 2 *log(2) - 2 *log(atan(2))
$$\int 2^{- x} \operatorname{atan}^{x}{\left(2 \right)}\, dx = C - \frac{\operatorname{atan}^{x}{\left(2 \right)}}{- 2^{x} \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + 2^{x} \log{\left(2 \right)}}$$
1 atan(2)
---------------------- - --------------------------
-log(atan(2)) + log(2) -2*log(atan(2)) + 2*log(2)
$$- \frac{\operatorname{atan}{\left(2 \right)}}{- 2 \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + 2 \log{\left(2 \right)}} + \frac{1}{- \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + \log{\left(2 \right)}}$$
=
1 atan(2)
---------------------- - --------------------------
-log(atan(2)) + log(2) -2*log(atan(2)) + 2*log(2)
$$- \frac{\operatorname{atan}{\left(2 \right)}}{- 2 \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + 2 \log{\left(2 \right)}} + \frac{1}{- \log{\left(\operatorname{atan}{\left(2 \right)} \right)} + \log{\left(2 \right)}}$$
1/(-log(atan(2)) + log(2)) - atan(2)/(-2*log(atan(2)) + 2*log(2))
Use the examples entering the upper and lower limits of integration.