Mister Exam

Other calculators


2sec^2(4/5x)dx

Integral of 2sec^2(4/5x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       2/4*x\     
 |  2*sec |---|*1 dx
 |        \ 5 /     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 2 \sec^{2}{\left(\frac{4 x}{5} \right)} 1\, dx$$
Integral(2*sec(4*x/5)^2*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            /4*x\
 |                        5*sin|---|
 |      2/4*x\                 \ 5 /
 | 2*sec |---|*1 dx = C + ----------
 |       \ 5 /                 /4*x\
 |                        2*cos|---|
/                              \ 5 /
$${{5\,\tan \left({{4\,x}\over{5}}\right)}\over{2}}$$
The graph
The answer [src]
5*sin(4/5)
----------
2*cos(4/5)
$${{5\,\tan \left({{4}\over{5}}\right)}\over{2}}$$
=
=
5*sin(4/5)
----------
2*cos(4/5)
$$\frac{5 \sin{\left(\frac{4}{5} \right)}}{2 \cos{\left(\frac{4}{5} \right)}}$$
Numerical answer [src]
2.57409639262591
2.57409639262591
The graph
Integral of 2sec^2(4/5x)dx dx

    Use the examples entering the upper and lower limits of integration.