Mister Exam

Other calculators


e^(-4x)

Integral of e^(-4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |   -4*x   
 |  E     dx
 |          
/           
0           
01e4xdx\int\limits_{0}^{1} e^{- 4 x}\, dx
Integral(E^(-4*x), (x, 0, 1))
Detail solution
  1. Let u=4xu = - 4 x.

    Then let du=4dxdu = - 4 dx and substitute du4- \frac{du}{4}:

    (eu4)du\int \left(- \frac{e^{u}}{4}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      False\text{False}

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      So, the result is: eu4- \frac{e^{u}}{4}

    Now substitute uu back in:

    e4x4- \frac{e^{- 4 x}}{4}

  2. Add the constant of integration:

    e4x4+constant- \frac{e^{- 4 x}}{4}+ \mathrm{constant}


The answer is:

e4x4+constant- \frac{e^{- 4 x}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                 -4*x
 |  -4*x          e    
 | E     dx = C - -----
 |                  4  
/                      
e4xdx=Ce4x4\int e^{- 4 x}\, dx = C - \frac{e^{- 4 x}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-1
The answer [src]
     -4
1   e  
- - ---
4    4 
1414e4\frac{1}{4} - \frac{1}{4 e^{4}}
=
=
     -4
1   e  
- - ---
4    4 
1414e4\frac{1}{4} - \frac{1}{4 e^{4}}
1/4 - exp(-4)/4
Numerical answer [src]
0.245421090277816
0.245421090277816
The graph
Integral of e^(-4x) dx

    Use the examples entering the upper and lower limits of integration.