Mister Exam

Other calculators

Integral of (2+Cosx)/(2-Sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  2 + cos(x)   
 |  ---------- dx
 |  2 - sin(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)} + 2}{2 - \sin{\left(x \right)}}\, dx$$
Integral((2 + cos(x))/(2 - sin(x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Don't know the steps in finding this integral.

            But the integral is

          So, the result is:

        The result is:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Don't know the steps in finding this integral.

            But the integral is

          So, the result is:

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                                  /        /x   pi\       /              ___    /x\\\
                                                  |        |- - --|       |    ___   2*\/ 3 *tan|-|||
  /                                           ___ |        |2   2 |       |  \/ 3               \2/||
 |                                        4*\/ 3 *|pi*floor|------| + atan|- ----- + --------------||
 | 2 + cos(x)                                     \        \  pi  /       \    3           3       //
 | ---------- dx = C - log(-2 + sin(x)) + -----------------------------------------------------------
 | 2 - sin(x)                                                          3                             
 |                                                                                                   
/                                                                                                    
$$\int \frac{\cos{\left(x \right)} + 2}{2 - \sin{\left(x \right)}}\, dx = C + \frac{4 \sqrt{3} \left(\operatorname{atan}{\left(\frac{2 \sqrt{3} \tan{\left(\frac{x}{2} \right)}}{3} - \frac{\sqrt{3}}{3} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{3} - \log{\left(\sin{\left(x \right)} - 2 \right)}$$
The graph
The answer [src]
                                              /          /  ___       ___         \\                                            
                                          ___ |          |\/ 3    2*\/ 3 *tan(1/2)||                                            
                                      4*\/ 3 *|-pi - atan|----- - ----------------||           ___                              
     /                      2     \           \          \  3            3        //   14*pi*\/ 3                /       2     \
- log\4 - 4*tan(1/2) + 4*tan (1/2)/ + ---------------------------------------------- + ----------- + log(4) + log\1 + tan (1/2)/
                                                            3                               9                                   
$$\frac{4 \sqrt{3} \left(- \pi - \operatorname{atan}{\left(- \frac{2 \sqrt{3} \tan{\left(\frac{1}{2} \right)}}{3} + \frac{\sqrt{3}}{3} \right)}\right)}{3} - \log{\left(- 4 \tan{\left(\frac{1}{2} \right)} + 4 \tan^{2}{\left(\frac{1}{2} \right)} + 4 \right)} + \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} + \log{\left(4 \right)} + \frac{14 \sqrt{3} \pi}{9}$$
=
=
                                              /          /  ___       ___         \\                                            
                                          ___ |          |\/ 3    2*\/ 3 *tan(1/2)||                                            
                                      4*\/ 3 *|-pi - atan|----- - ----------------||           ___                              
     /                      2     \           \          \  3            3        //   14*pi*\/ 3                /       2     \
- log\4 - 4*tan(1/2) + 4*tan (1/2)/ + ---------------------------------------------- + ----------- + log(4) + log\1 + tan (1/2)/
                                                            3                               9                                   
$$\frac{4 \sqrt{3} \left(- \pi - \operatorname{atan}{\left(- \frac{2 \sqrt{3} \tan{\left(\frac{1}{2} \right)}}{3} + \frac{\sqrt{3}}{3} \right)}\right)}{3} - \log{\left(- 4 \tan{\left(\frac{1}{2} \right)} + 4 \tan^{2}{\left(\frac{1}{2} \right)} + 4 \right)} + \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} + \log{\left(4 \right)} + \frac{14 \sqrt{3} \pi}{9}$$
-log(4 - 4*tan(1/2) + 4*tan(1/2)^2) + 4*sqrt(3)*(-pi - atan(sqrt(3)/3 - 2*sqrt(3)*tan(1/2)/3))/3 + 14*pi*sqrt(3)/9 + log(4) + log(1 + tan(1/2)^2)
Numerical answer [src]
1.87855150230211
1.87855150230211

    Use the examples entering the upper and lower limits of integration.