1 / | | 2 + cos(x) | ---------- dx | 2 - sin(x) | / 0
Integral((2 + cos(x))/(2 - sin(x)), (x, 0, 1))
There are multiple ways to do this integral.
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
So, the result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ /x pi\ / ___ /x\\\
| |- - --| | ___ 2*\/ 3 *tan|-|||
/ ___ | |2 2 | | \/ 3 \2/||
| 4*\/ 3 *|pi*floor|------| + atan|- ----- + --------------||
| 2 + cos(x) \ \ pi / \ 3 3 //
| ---------- dx = C - log(-2 + sin(x)) + -----------------------------------------------------------
| 2 - sin(x) 3
|
/
/ / ___ ___ \\
___ | |\/ 3 2*\/ 3 *tan(1/2)||
4*\/ 3 *|-pi - atan|----- - ----------------|| ___
/ 2 \ \ \ 3 3 // 14*pi*\/ 3 / 2 \
- log\4 - 4*tan(1/2) + 4*tan (1/2)/ + ---------------------------------------------- + ----------- + log(4) + log\1 + tan (1/2)/
3 9
=
/ / ___ ___ \\
___ | |\/ 3 2*\/ 3 *tan(1/2)||
4*\/ 3 *|-pi - atan|----- - ----------------|| ___
/ 2 \ \ \ 3 3 // 14*pi*\/ 3 / 2 \
- log\4 - 4*tan(1/2) + 4*tan (1/2)/ + ---------------------------------------------- + ----------- + log(4) + log\1 + tan (1/2)/
3 9
-log(4 - 4*tan(1/2) + 4*tan(1/2)^2) + 4*sqrt(3)*(-pi - atan(sqrt(3)/3 - 2*sqrt(3)*tan(1/2)/3))/3 + 14*pi*sqrt(3)/9 + log(4) + log(1 + tan(1/2)^2)
Use the examples entering the upper and lower limits of integration.