Mister Exam

Other calculators

Integral of 2*x^2+x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /   2    \   
 |  \2*x  + x/ dx
 |               
/                
-1               
$$\int\limits_{-1}^{1} \left(2 x^{2} + x\right)\, dx$$
Integral(2*x^2 + x, (x, -1, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             
 |                      2      3
 | /   2    \          x    2*x 
 | \2*x  + x/ dx = C + -- + ----
 |                     2     3  
/                               
$$\int \left(2 x^{2} + x\right)\, dx = C + \frac{2 x^{3}}{3} + \frac{x^{2}}{2}$$
The graph
The answer [src]
4/3
$$\frac{4}{3}$$
=
=
4/3
$$\frac{4}{3}$$
4/3
Numerical answer [src]
1.33333333333333
1.33333333333333

    Use the examples entering the upper and lower limits of integration.