Mister Exam

Other calculators

Integral of 2*x+x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2              
  /              
 |               
 |  /       2\   
 |  \2*x + x / dx
 |               
/                
0                
02(x2+2x)dx\int\limits_{0}^{-2} \left(x^{2} + 2 x\right)\, dx
Integral(2*x + x^2, (x, 0, -2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2x^{2}

    The result is: x33+x2\frac{x^{3}}{3} + x^{2}

  2. Now simplify:

    x2(x+3)3\frac{x^{2} \left(x + 3\right)}{3}

  3. Add the constant of integration:

    x2(x+3)3+constant\frac{x^{2} \left(x + 3\right)}{3}+ \mathrm{constant}


The answer is:

x2(x+3)3+constant\frac{x^{2} \left(x + 3\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                           3
 | /       2\           2   x 
 | \2*x + x / dx = C + x  + --
 |                          3 
/                             
(x2+2x)dx=C+x33+x2\int \left(x^{2} + 2 x\right)\, dx = C + \frac{x^{3}}{3} + x^{2}
The graph
-2.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.02.5-2.5
The answer [src]
4/3
43\frac{4}{3}
=
=
4/3
43\frac{4}{3}
4/3
Numerical answer [src]
1.33333333333333
1.33333333333333

    Use the examples entering the upper and lower limits of integration.