Integral of 2*x+x^2 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫2xdx=2∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: x2
The result is: 3x3+x2
-
Now simplify:
3x2(x+3)
-
Add the constant of integration:
3x2(x+3)+constant
The answer is:
3x2(x+3)+constant
The answer (Indefinite)
[src]
/
| 3
| / 2\ 2 x
| \2*x + x / dx = C + x + --
| 3
/
∫(x2+2x)dx=C+3x3+x2
The graph
Use the examples entering the upper and lower limits of integration.