Mister Exam

Other calculators

Integral of 2*x*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -pi             
  /              
 |               
 |  2*x*cos(x) dx
 |               
/                
-oo              
$$\int\limits_{-\infty}^{- \pi} 2 x \cos{\left(x \right)}\, dx$$
Integral((2*x)*cos(x), (x, -oo, -pi))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of sine is negative cosine:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | 2*x*cos(x) dx = C + 2*cos(x) + 2*x*sin(x)
 |                                          
/                                           
$$\int 2 x \cos{\left(x \right)}\, dx = C + 2 x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$
The answer [src]
   -pi           
    /            
   |             
2* |  x*cos(x) dx
   |             
  /              
  -oo            
$$2 \int\limits_{-\infty}^{- \pi} x \cos{\left(x \right)}\, dx$$
=
=
   -pi           
    /            
   |             
2* |  x*cos(x) dx
   |             
  /              
  -oo            
$$2 \int\limits_{-\infty}^{- \pi} x \cos{\left(x \right)}\, dx$$
2*Integral(x*cos(x), (x, -oo, -pi))

    Use the examples entering the upper and lower limits of integration.