-pi / | | 2*x*cos(x) dx | / -oo
Integral((2*x)*cos(x), (x, -oo, -pi))
Use integration by parts:
Let and let .
Then .
To find :
The integral of cosine is sine:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 2*x*cos(x) dx = C + 2*cos(x) + 2*x*sin(x) | /
-pi / | 2* | x*cos(x) dx | / -oo
=
-pi / | 2* | x*cos(x) dx | / -oo
2*Integral(x*cos(x), (x, -oo, -pi))
Use the examples entering the upper and lower limits of integration.