Mister Exam

Other calculators

Integral of (2*x-3*y)-(x-y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  (2*x - 3*y + -x + y) dx
 |                         
/                          
0                          
01((x+y)+(2x3y))dx\int\limits_{0}^{1} \left(\left(- x + y\right) + \left(2 x - 3 y\right)\right)\, dx
Integral(2*x - 3*y - x + y, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      1. The integral of a constant is the constant times the variable of integration:

        ydx=xy\int y\, dx = x y

      The result is: x22+xy- \frac{x^{2}}{2} + x y

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x2x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        (3y)dx=3xy\int \left(- 3 y\right)\, dx = - 3 x y

      The result is: x23xyx^{2} - 3 x y

    The result is: x222xy\frac{x^{2}}{2} - 2 x y

  2. Now simplify:

    x(x4y)2\frac{x \left(x - 4 y\right)}{2}

  3. Add the constant of integration:

    x(x4y)2+constant\frac{x \left(x - 4 y\right)}{2}+ \mathrm{constant}


The answer is:

x(x4y)2+constant\frac{x \left(x - 4 y\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               2        
 |                               x         
 | (2*x - 3*y + -x + y) dx = C + -- - 2*x*y
 |                               2         
/                                          
((x+y)+(2x3y))dx=C+x222xy\int \left(\left(- x + y\right) + \left(2 x - 3 y\right)\right)\, dx = C + \frac{x^{2}}{2} - 2 x y
The answer [src]
1/2 - 2*y
122y\frac{1}{2} - 2 y
=
=
1/2 - 2*y
122y\frac{1}{2} - 2 y
1/2 - 2*y

    Use the examples entering the upper and lower limits of integration.