Mister Exam

Other calculators


2*x/(x^2+4)

Integral of 2*x/(x^2+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   2*x     
 |  ------ dx
 |   2       
 |  x  + 4   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2 x}{x^{2} + 4}\, dx$$
Integral((2*x)/(x^2 + 4), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |  2*x     
 | ------ dx
 |  2       
 | x  + 4   
 |          
/           
Rewrite the integrand
                           /0\    
                           |-|    
 2*x         2*x           \4/    
------ = ------------ + ----------
 2        2                  2    
x  + 4   x  + 0*x + 4   /-x \     
                        |---|  + 1
                        \ 2 /     
or
  /           
 |            
 |  2*x       
 | ------ dx  
 |  2        =
 | x  + 4     
 |            
/             
  
  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 4   
 |                
/                 
In the integral
  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 4   
 |                
/                 
do replacement
     2
u = x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du = log(4 + u)
 | 4 + u                
 |                      
/                       
do backward replacement
  /                             
 |                              
 |     2*x              /     2\
 | ------------ dx = log\4 + x /
 |  2                           
 | x  + 0*x + 4                 
 |                              
/                               
In the integral
0
do replacement
    -x 
v = ---
     2 
then
the integral =
True
do backward replacement
True
Solution is:
       /     2\
C + log\4 + x /
The answer (Indefinite) [src]
  /                           
 |                            
 |  2*x               /     2\
 | ------ dx = C + log\4 + x /
 |  2                         
 | x  + 4                     
 |                            
/                             
$$\int \frac{2 x}{x^{2} + 4}\, dx = C + \log{\left(x^{2} + 4 \right)}$$
The graph
The answer [src]
-log(4) + log(5)
$$- \log{\left(4 \right)} + \log{\left(5 \right)}$$
=
=
-log(4) + log(5)
$$- \log{\left(4 \right)} + \log{\left(5 \right)}$$
-log(4) + log(5)
Numerical answer [src]
0.22314355131421
0.22314355131421
The graph
Integral of 2*x/(x^2+4) dx

    Use the examples entering the upper and lower limits of integration.