Integral of 2*x/(x+2) dx
The solution
Detail solution
-
Rewrite the integrand:
x+22x=2−x+24
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫2dx=2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+24)dx=−4∫x+21dx
-
Let u=x+2.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+2)
So, the result is: −4log(x+2)
The result is: 2x−4log(x+2)
-
Add the constant of integration:
2x−4log(x+2)+constant
The answer is:
2x−4log(x+2)+constant
The answer (Indefinite)
[src]
/
|
| 2*x
| ----- dx = C - 4*log(2 + x) + 2*x
| x + 2
|
/
∫x+22xdx=C+2x−4log(x+2)
The graph
−4log(4)+4log(2)+4
=
−4log(4)+4log(2)+4
Use the examples entering the upper and lower limits of integration.