Mister Exam

Other calculators

You entered:

2*x/(1-x^2)

What you mean?

Integral of 2*x/(1-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   2*x     
 |  ------ dx
 |       2   
 |  1 - x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2 x}{1 - x^{2}}\, dx$$
Integral(2*x/(1 - x^2), (x, 0, 1))
Detail solution
We have the integral:
  /           
 |            
 |    2*x     
 | 1*------ dx
 |        2   
 |   1 - x    
 |            
/             
Rewrite the integrand
 2*x         -1*2*x + 0  
------ = - --------------
     2        2          
1 - x      - x  + 0*x + 1
or
  /             
 |              
 |    2*x       
 | 1*------ dx  
 |        2    =
 |   1 - x      
 |              
/               
  
   /                 
  |                  
  |   -1*2*x + 0     
- | -------------- dx
  |    2             
  | - x  + 0*x + 1   
  |                  
 /                   
In the integral
   /                 
  |                  
  |   -1*2*x + 0     
- | -------------- dx
  |    2             
  | - x  + 0*x + 1   
  |                  
 /                   
do replacement
      2
u = -x 
then
the integral =
   /                      
  |                       
  |   1                   
- | ----- du = -log(1 + u)
  | 1 + u                 
  |                       
 /                        
do backward replacement
   /                                 
  |                                  
  |   -1*2*x + 0            /      2\
- | -------------- dx = -log\-1 + x /
  |    2                             
  | - x  + 0*x + 1                   
  |                                  
 /                                   
Solution is:
       /      2\
C - log\-1 + x /
The answer (Indefinite) [src]
  /                           
 |                            
 |  2*x               /     2\
 | ------ dx = C - log\1 - x /
 |      2                     
 | 1 - x                      
 |                            
/                             
$$-\log \left(1-x^2\right)$$
The answer [src]
oo + pi*I
$${\it \%a}$$
=
=
oo + pi*I
$$\infty + i \pi$$
Numerical answer [src]
43.3978096056539
43.3978096056539

    Use the examples entering the upper and lower limits of integration.