Mister Exam

Other calculators


2*x/(1-x^2)

You entered:

2*x/(1-x^2)

What you mean?

Derivative of 2*x/(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x  
------
     2
1 - x 
$$\frac{2 x}{1 - x^{2}}$$
d / 2*x  \
--|------|
dx|     2|
  \1 - x /
$$\frac{d}{d x} \frac{2 x}{1 - x^{2}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               2  
  2         4*x   
------ + ---------
     2           2
1 - x    /     2\ 
         \1 - x / 
$$\frac{4 x^{2}}{\left(1 - x^{2}\right)^{2}} + \frac{2}{1 - x^{2}}$$
The second derivative [src]
    /         2 \
    |      4*x  |
4*x*|3 - -------|
    |          2|
    \    -1 + x /
-----------------
             2   
    /      2\    
    \-1 + x /    
$$\frac{4 x \left(- \frac{4 x^{2}}{x^{2} - 1} + 3\right)}{\left(x^{2} - 1\right)^{2}}$$
The third derivative [src]
   /                   /          2 \\
   |                 2 |       2*x  ||
   |              4*x *|-1 + -------||
   |         2         |           2||
   |      4*x          \     -1 + x /|
12*|1 - ------- + -------------------|
   |          2               2      |
   \    -1 + x          -1 + x       /
--------------------------------------
                       2              
              /      2\               
              \-1 + x /               
$$\frac{12 \cdot \left(\frac{4 x^{2} \cdot \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{x^{2} - 1} - \frac{4 x^{2}}{x^{2} - 1} + 1\right)}{\left(x^{2} - 1\right)^{2}}$$
The graph
Derivative of 2*x/(1-x^2)