Mister Exam

Other calculators


2*sqrt(x)-0.25x^2

Integral of 2*sqrt(x)-0.25x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                  
  /                  
 |                   
 |  /           2\   
 |  |    ___   x |   
 |  |2*\/ x  - --| dx
 |  \          4 /   
 |                   
/                    
0                    
$$\int\limits_{0}^{4} \left(- \frac{x^{2}}{4} + 2 \sqrt{x}\right)\, dx$$
Integral(2*sqrt(x) - x^2/4, (x, 0, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | /           2\           3      3/2
 | |    ___   x |          x    4*x   
 | |2*\/ x  - --| dx = C - -- + ------
 | \          4 /          12     3   
 |                                    
/                                     
$${{4\,x^{{{3}\over{2}}}}\over{3}}-{{x^3}\over{12}}$$
The graph
The answer [src]
16/3
$${{16}\over{3}}$$
=
=
16/3
$$\frac{16}{3}$$
Numerical answer [src]
5.33333333333333
5.33333333333333
The graph
Integral of 2*sqrt(x)-0.25x^2 dx

    Use the examples entering the upper and lower limits of integration.