Mister Exam

Other calculators

Integral of (2*root(x)-x^2+3)/root(3,x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |      ___    2       
 |  2*\/ x  - x  + 3   
 |  ---------------- dx
 |         ___         
 |       \/ 3          
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\left(2 \sqrt{x} - x^{2}\right) + 3}{\sqrt{3}}\, dx$$
Integral((2*sqrt(x) - x^2 + 3)/sqrt(3), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |     ___    2                ___ /       3      3/2\
 | 2*\/ x  - x  + 3          \/ 3  |      x    4*x   |
 | ---------------- dx = C + -----*|3*x - -- + ------|
 |        ___                  3   \      3      3   /
 |      \/ 3                                          
 |                                                    
/                                                     
$$\int \frac{\left(2 \sqrt{x} - x^{2}\right) + 3}{\sqrt{3}}\, dx = C + \frac{\sqrt{3}}{3} \left(\frac{4 x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3} + 3 x\right)$$
The graph
The answer [src]
    ___
4*\/ 3 
-------
   3   
$$\frac{4 \sqrt{3}}{3}$$
=
=
    ___
4*\/ 3 
-------
   3   
$$\frac{4 \sqrt{3}}{3}$$
4*sqrt(3)/3
Numerical answer [src]
2.3094010767585
2.3094010767585

    Use the examples entering the upper and lower limits of integration.