Mister Exam

Other calculators


2*exp(3*x)

Integral of 2*exp(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3*x   
 |  2*e    dx
 |           
/            
0            
012e3xdx\int\limits_{0}^{1} 2 e^{3 x}\, dx
Integral(2*exp(3*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2e3xdx=2e3xdx\int 2 e^{3 x}\, dx = 2 \int e^{3 x}\, dx

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      eu3du\int \frac{e^{u}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu3\frac{e^{u}}{3}

      Now substitute uu back in:

      e3x3\frac{e^{3 x}}{3}

    So, the result is: 2e3x3\frac{2 e^{3 x}}{3}

  2. Add the constant of integration:

    2e3x3+constant\frac{2 e^{3 x}}{3}+ \mathrm{constant}


The answer is:

2e3x3+constant\frac{2 e^{3 x}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                    3*x
 |    3*x          2*e   
 | 2*e    dx = C + ------
 |                   3   
/                        
2e3xdx=C+2e3x3\int 2 e^{3 x}\, dx = C + \frac{2 e^{3 x}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90050
The answer [src]
         3
  2   2*e 
- - + ----
  3    3  
23+2e33- \frac{2}{3} + \frac{2 e^{3}}{3}
=
=
         3
  2   2*e 
- - + ----
  3    3  
23+2e33- \frac{2}{3} + \frac{2 e^{3}}{3}
-2/3 + 2*exp(3)/3
Numerical answer [src]
12.7236912821251
12.7236912821251
The graph
Integral of 2*exp(3*x) dx

    Use the examples entering the upper and lower limits of integration.