Integral of 2*exp(3*x) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e3xdx=2∫e3xdx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3x
So, the result is: 32e3x
-
Add the constant of integration:
32e3x+constant
The answer is:
32e3x+constant
The answer (Indefinite)
[src]
/
| 3*x
| 3*x 2*e
| 2*e dx = C + ------
| 3
/
∫2e3xdx=C+32e3x
The graph
−32+32e3
=
−32+32e3
Use the examples entering the upper and lower limits of integration.