-11 ---- 10 / | | 2 | -(x - 3/10) | ------------- | 200 22 | -------------*e dx | / ______ \ | |\/ 2*pi *33| | |-----------| | \ 10 / | / -12/5
Integral((200/((sqrt(2*pi)*33/10)))*exp((-(x - 3/10)^2)/22), (x, -12/5, -11/10))
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 2 | -(x - 3/10) | ------------- ___ / ____ \ | 200 22 ____ ____ 5*\/ 2 |\/ 22 *(-3/10 + x)| | -------------*e dx = C + 100*\/ 22 *\/ pi *---------*erf|------------------| | / ______ \ ____ \ 22 / | |\/ 2*pi *33| 33*\/ pi | |-----------| | \ 10 / | /
/ ____\ / ____\
____ |27*\/ 22 | ____ |7*\/ 22 |
1000*\/ 11 *erf|---------| 1000*\/ 11 *erf|--------|
\ 220 / \ 110 /
- -------------------------- + -------------------------
33 33
=
/ ____\ / ____\
____ |27*\/ 22 | ____ |7*\/ 22 |
1000*\/ 11 *erf|---------| 1000*\/ 11 *erf|--------|
\ 220 / \ 110 /
- -------------------------- + -------------------------
33 33
-1000*sqrt(11)*erf(27*sqrt(22)/220)/33 + 1000*sqrt(11)*erf(7*sqrt(22)/110)/33
Use the examples entering the upper and lower limits of integration.